
PRINCIPLES OF OPERATING SYSTEMS

1

LECTURE- 7
Principles of

Operating Systems
USER LEVEL AND KERNEL LEVEL

THREADS

Threads

 Processes do not share resources well
 high context switching overhead

 Idea: Separate concurrency from protection
 Multithreading: a single program made up of a number of

different concurrent activities
 A thread (or lightweight process)

 basic unit of CPU utilization; it consists of:
 program counter, register set and stack space

 A thread shares the following with peer threads:
 code section, data section and OS resources (open files, signals)
 No protection between threads

 Collectively called a task.

 Heavyweight process is a task with one thread.

Single and Multithreaded Processes

 Threads encapsulate concurrency: “Active” component
 Address spaces encapsulate protection: “Passive” part

 Keeps buggy program from trashing the system

Benefits
 Responsiveness

 Resource Sharing

 Economy

 Utilization of MP Architectures

Threads(Cont.)

 In a multiple threaded task, while one server
thread is blocked and waiting, a second
thread in the same task can run.

 Cooperation of multiple threads in the same job confers
higher throughput and improved performance.

 Applications that require sharing a common buffer (i.e.
producer-consumer) benefit from thread utilization.

 Threads provide a mechanism that allows
sequential processes to make blocking
system calls while also achieving parallelism.

Thread State
 State shared by all threads in process/addr

space
 Contents of memory (global variables, heap)
 I/O state (file system, network connections, etc)

 State “private” to each thread
 Kept in TCB Thread Control Block
 CPU registers (including, program counter)
 Execution stack

 Parameters, Temporary variables
 return PCs are kept while called procedures are

executing

Threads (cont.)

 Thread context switch still requires a register
set switch, but no memory management
related work!!

 Thread states -
 ready, blocked, running, terminated

 Threads share CPU and only one thread can
run at a time.

 No protection among threads.

Examples: Multithreaded programs
 Embedded systems

 Elevators, Planes, Medical systems, Wristwatches
 Single Program, concurrent operations

 Most modern OS kernels
 Internally concurrent because have to deal with

concurrent requests by multiple users
 But no protection needed within kernel

 Database Servers
 Access to shared data by many concurrent users
 Also background utility processing must be done

More Examples: Multithreaded programs

 Network Servers
 Concurrent requests from network
 Again, single program, multiple concurrent operations
 File server, Web server, and airline reservation systems

 Parallel Programming (More than one physical CPU)
 Split program into multiple threads for parallelism
 This is called Multiprocessing

Real operating systems have either
 One or many address spaces
 One or many threads per address space

Mach, OS/2, Linux
Windows 9x???

Win NT to XP, Solaris,
HP-UX, OS X

Embedded systems
(Geoworks, VxWorks,

JavaOS,etc)
JavaOS, Pilot(PC)

Traditional UNIXMS/DOS, early
Macintosh

Many

One

threads
Per AS:

ManyOne

of

 a
dd

r
sp

ac
es

:

Types of Threads

 Kernel-supported threads (Mach and OS/2)
 User-level threads
 Hybrid approach implements both user-level

and kernel-supported threads (Solaris 2).

Kernel Threads

 Supported by the Kernel
 Native threads supported directly by the kernel
 Every thread can run or block independently
 One process may have several threads waiting on different things

 Downside of kernel threads: a bit expensive
 Need to make a crossing into kernel mode to schedule

 Examples
 Windows XP/2000, Solaris, Linux,Tru64 UNIX,

Mac OS X, Mach, OS/2

User Threads
 Supported above the kernel, via a set of library calls

at the user level.
 Thread management done by user-level threads library

 User program provides scheduler and thread package
 May have several user threads per kernel thread
 User threads may be scheduled non-premptively relative to

each other (only switch on yield())
 Advantages

 Cheap, Fast
 Threads do not need to call OS and cause interrupts to kernel

 Disadv: If kernel is single threaded, system call from any
thread can block the entire task.

 Example thread libraries:
 POSIX Pthreads, Win32 threads, Java threads

Multithreading Models

 Many-to-One

 One-to-One

 Many-to-Many

Many-to-One
 Many user-level threads mapped to single

kernel thread
 Examples:

 Solaris Green Threads
 GNU Portable Threads

One-to-One

 Each user-level thread maps to kernel thread

Examples
 Windows NT/XP/2000; Linux; Solaris 9 and later

Many-to-Many Model
 Allows many user level

threads to be mapped to
many kernel threads

 Allows the operating
system to create a
sufficient number of
kernel threads

 Solaris prior to version 9
 Windows NT/2000 with

the ThreadFiber package

